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1 Introduction

After a discussion on the impact of 3D on programing models, the remaining of this report
will provide the syntax and the semantics of the PRO3D programming model, and a detailed
description of the translation tool for application software into the intermediate format.

1.1 Impact of 3D on Programming Models & Runtimes

The programming model is the set of formalisms provided to the programmer to write his
application. Once writen, the compiler translates an application into binary code executable by
the target architecture. The compiler also provide a runtime for the platform, made of some
binary code libraries called by the compiled binary code.

Although there need not be anything in common between programming models and the
target architecture, there is a historical trend to have a tight relationship between the pro-
gramming model and its target architecture: Lisp machines for Lisp programming in the ’80,
uniprocessors with flat memories for C since the 80’, vectors processors at the time of Fortran
77, multiprocessors with NUMA memories for Fortran 95, transputers for CSP [1], etc.

As 3D is an innovation from microelectronics, i.e. from the architecture side, one legitimate
question can be “what will be the impact of 3D on programming models?”

The remaining of this introduction tries to answer this question by walking though 3D
opportunities [2, 3], and discussing their impact on programming models – but also, as we will
see, on the runtime.

1.1.1 3D Stacked Memory

This 3D stack is made of a generic SMP-based SoC (e.g. dual-core ARM A9 for smartphones)
for which its memory would be stacked and accessed through TSVs.

In this case the only thing visible from the programming side is a much higher bandwidth
to the RAM, lower latencies, larger cache or a combination thereof [4]. Such evolution can
be reduced to a shift of the architecture on the RISC/CISC axis towards better memory per-
formance. This can be addressed by an update of the compilation algorithms with these new
memory parameters and some performance analysis. The impact on the programming model
as such, is therefore minimal, and von-Neumann programming languages such as C/C++ are
still applicable.

1.1.2 3D Manycore with Distributed Memory

NoC-Based Manycore architectures, 2D or 3D, are more efficiently addressed by programming
models that do not assume a global shared memory. E.g. Process networks and message-passing
programming models are more suitable to such architectures, even though no 3D stacking is
involved yet, as they are more amendable to an explicit mapping phase during compilation.

For such architectures, going 3D leads basically to two more architectural options [3]: (1)
vertical NoC routing, and again, (2) memory stacking. These options can mostly be addressed
in the compilation flow, as their main impact is for (1) vertical NoC to introduce different
latencies and bandwidth for horizontal and vertical links; and for (2) stacked memory, again
much higher bandwidth, lower latencies, larger cache or a combination thereof.

1.1.3 On Architecture Topologies and Thermal Aspects

The main changes discussed so far are a retrofit of the topological characteristics of the archi-
tecture into the compilation flow. Somehow, this is very similar to the issues encountered in
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HPC with distributed machines in the early ‘90. The problem is difficult, but a wide body of
literature exists.

The new issues introduced by 3D stacking are mostly related to thermal issues. Theses
issues have two main origins:

1. Thermal cross-coupling of execution units. The relative position of processing units as a
whole, or computing units from therein (operators, instructions decoders, register files,
caches, etc.) and memory defines how heat from one element impacts another one. If two
processors are too close to each other, we may have to offload both of them in situations
where a single one could have run without harm. So not only the topoplogy of the
manycore will have to be know from the compilation flow and the runtime, but also the
geometry and thermal characteristics of the hardware [5];

2. Different time scale for thermal propagation and computation forecast. Manycore archi-
tecture are in the GHz range, while the evolution of the temperature is in the Hz range.
This means several order of magnitude between the cause of heating –computations– and
heating itself [6]. This gap in dynamic magnitude is reinforced by the fact that even at
constant frequency, energy consumption increases with temperature. All this makes it
difficult to reverse temperature variations. Any decision related to thermal management
will probably have to use predictive thermal models [7].

1.1.4 Impact on Runtimes & Programming Models

The consequence of 3D stacking on the runtime and the programming model are twofolds:

• The fading of pure static compilation. Due to the huge gap of time scale between com-
putation and thermal effects, it seems very difficult, if doable at all, to build full-static
compilation schemes where the compiler will decide of the mapping off-line, before execu-
tion, once and for all.

At least to ensure platform’s thermal integrity, some level of responsibility w.r.t. mapping
must be left to the runtime [8]. To ensure this integrity the runtime will have to deal
with tasks scheduling and resource allocation while taking into account not only the
architecture’s topology and the computation load [9], but also the actual geometry and
thermal characteristics of the material involved in the architecture [10].

This will require programming models that can provide enough flexibility at execution
whereas essential properties can be guaranteed at compile-time [11].

• The fading of von Neumann as a programming model. As for programming models, we
should move away from von Neumann –only as programming model, not as computing
architecture– and consider other kinds of programming models naturally parallel, like
process network and message passing already discussed [12, 13, 14].

Even these parallel programming models must be checked to be amendable to analyses
that can predict the amount of computing load, if not to an absolute time reference, at
least towards a moving horizon. This is necessary to provide computation forecasts to
a runtime scheduler that can efficiently use the stacked architecture while preserving its
thermal integrity.
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2 PRO3D Programming Model

DOL3D is used as the programming model in PRO3D. This section gives an overview of the
DOL3D application specification. For a complete description, refer to deliverable D2.1 [15].
As stated in the deliverable D2.1 [15], we use Synchronous Dataflow (SDF) [16] as the model
of computation in PRO3D. In DOL3D, an application specification consists of (a) structural
specification which specifies the structure of SDF, and (b) functional specification which specifies
the functionality of each actor in the SDF. We now describe each of these specifications.

2.1 Structural specification of an application:

The structure of an application is defined by the structure of the SDF. With respect to the
structure, SDF is a directed graph whose nodes represent actors (processes) and whose directed
edges represent communication channels between actors.

In DOL3D, SDFs are syntactically represented in an XML file comprising of an intercon-
nection of the following elements: process, sw channel, connection and port. An example of
such representation is shown in Figure 1, where a channel S between processes P and C (Figure
1(a)) is depicted with the corresponding ports and connections (Figure 1(b)).

P C

P S C

process

sw_channel

output port

input port

connection

(a)

(b)

Figure 1: Process-network representation

To simplify specifications of large and regular SDF graphs, DOL3D provides the use of
iterators in the XML specification. With the help of iterators, a variable number of instances
of processes or channels can be created and interconnected by specifying them only once. For
examples using such iterators refer to deliverable D7.1 [17].

Each of the above elements in the XML file has specific parameters. For instance, a process

has parameters that assign it a unique name, the source code which specifies its functionality,
and a list of input/output ports. In addition, other details can be annotated during the tool-
flow. For instance, after the functional simulation, ports of each process are annotated with the
number and the size of tokens through them. Also after calibration, the obtained estimates of
execution times can also be annotated in the specification of the process.

For a detailed listing of the XML file and explanation of the different elements refer to
deliverable D7.1 [17].

2.2 Functional specification

The behaviour of the DOL3D application is given by the functionality of the processes. In
DOL3D, the functionality of the processes is written in separate C/C++ files. These files
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contain two methods, namely DOL3D init() and DOL3D fire(). DOL3D init() is executed once
at the beginning and DOL3D fire() is executed repeatedly until the application is terminated
with the DOL3D detach() command.

The communication between processes is through the communication API which consists
of two primitives DOL3D read(), and DOL3D write(). The semantics of these primitives would
depend on the platform-specific implementation.

As the model of computation is SDF, the total number of tokens consumed or produced
by an actor on each channel must remain the same across all firings. In DOL3D, we interpret
consuming (producing) a token as a single call to the primitive DOL3D read() (DOL3D write()).
Hence, in the number of DOL3D read() and DOL3D write() calls must be constant for each
actor across firings. However, note that the amount of data read (written) by DOL3D read()

(DOL3D write()) can vary across firings. Validation if a given application satisfies this property
is performed by the DOL3D tool-chain, as discussed in [15].
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3 Intermediate Format

The BIP component framework is used as an intermediate format for application software
described in DOL3D.

The BIP component framework [12] is entirely supported by the BIP language and its
associated toolset. This includes translators from various programming models, verification
tools, source-to-source transformers and C/C++-code generators for BIP models.

3.1 Syntax

The BIP language is a notation which allows building complex systems by coordinating the
behavior of a set of atomic components. BIP uses connectors, to specify possible interaction
patterns between components, and priorities, to select amongst possible interactions. The main
syntactic elements are the following:

• atomic components, with behavior specified as a set of transitions labeled by ports which
are action names used for synchronization.

• connectors used to specify possible interaction patterns between ports of components.

• priority used to select amongst possible interactions according to conditions depending
on the state of the integrated atomic components.

Atomic components: An atomic component consists of:

• A set of ports P = {p1 . . . pn}. Ports are action names used for synchronization with other
components.

• A set of control locations S = {s1 . . . sk}. They denote locations at which the components
await for synchronization.

• A set of variables V used to store (local) data.

• A set of transitions modeling atomic computation steps. A transition is a tuple of the form
(s1, p, gp, fp, s2), representing a step from control location s1 to s2. It can be executed if
the guard (boolean condition on V ) gp is true and some interaction including port p is
offered. Its execution is an atomic sequence of two microsteps: 1) an interaction including
p which involves synchronization between components with possible exchange of data,
followed by 2) an internal computation specified by the function fp on V . That is, if v is
a valuation of V after the interaction, then fp(v) is the new valuation when the transition
is completed.

In BIP, variables and functions are described in C/C++. Figure 2 shows an atomic component

full

empty
in

[0<x]

y:=f(x)

in

ou
t

out

Figure 2: An atomic component

with two ports in, out, variables x, y, and control loations empty, full. At control location
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empty, the transition labeled in is possible if 0 < x. When an interaction through in takes
place, the variable x is eventually modified and a new value for y is computed. From control
location full, the transition labeled out can occur. The omission of guard and function for this
transition means that the associated guard is true and the internal computation microstep is
empty.

The description of coordination between atomic components is layered. The first layer
describes the interactions between components by using connectors.

Connectors: A connector γ is a set of ports of atomic components which can be involved
in an interaction. We assume that connectors contain at most one port from each atomic
component. An interaction of γ is any non empty subset of this set. For example, a connector
γ with ports p1, p2, p3 has seven interactions: p1, p2, p3, p1p2, p1p3, p2p3, p1p2p3. Each non trivial
interaction i.e., interaction with more than one port, represents a synchronization between
transitions labeled with its ports. Further, connectors are associated with a typing mechanism
on its ports to specify the feasible interactions of a connector γ, in particular to express the
following two basic modes of synchronization:

• Strong synchronization or rendezvous, when the only feasible interaction of γ is the max-
imal one, i.e., it contains all the ports of γ. In this case, each port of the connector is of
type synchron.

• Weak synchronization or broadcast, when feasible interactions are all those containing a
particular port which initiates the broadcast. In this case, the initiator ports have type
trigger and the rest are typed synchron. That is, if γ contains ports p1, p2 and p3 and
p1 is the trigger, then the feasible interactions are p1, p1p2, p1p3, p1p2p3.

Additionally, each interaction α of a connector γ may have associated guard Gα (enabling
condition) and data transfer Fα specified by methods up() and sown(), in order to implement
data exchange between the interacting components. The execution of α is possible if Gα is true.
It atomically changes the global valuation v of the synchronized components to Fα(v). As for
atomic components, guards and functions are C expression and statements respectively. We

x1

x2

x3

p1

p2

p3

p1

p2

p3

(a) (b)

x1

x2

x3

C1 C2

Figure 3: Interaction types

use a graphical notation for connectors, where synchron ports are represented by bullets and
trigger by a triangle. The connector in figure 3(a) models a strong synchronization between
the ports p1, p2 and p3, while the one in figure 3(b) models a broadcast initiated by p1.

Priorities: The second layer describes dynamic priorities that provide a mean to coordinate
the execution of interactions within a BIP system. They are used to express scheduling policies
between simultaneously enabled interactions. More concretely, priorities are rules, each consist-
ing of an ordered pair of interactions associated with a condition. When the condition holds
and both interactions of the corresponding pair are enabled, only the one with higher-priority
can be executed.
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The combination of interactions and priorities characterizes the overall architecture of a
component. It confers BIP strong expressiveness that cannot be matched by other languages
[18].

Composite components: Composite components are defined by assembling sub-components
(atomic or composite) using connectors and priorities. Figure 4 shows a graphical representa-
tion of a BIP model. It consists of atomic components Sender, Receiver1 and Receiver2. The
behavior of Sender is described as an automaton with control locations Idle and Active. It com-
municates through port s which exports the variable x. Components Receiver1 and Receiver2
are composed by the connector C1, which represents a rendezvous interaction between ports
r1 and r2, leading to the composite component Receivers. The composite component exports
C1 by using port r. As a result of the data transfer in C1, the sum of the local variables y1
and y2 is exported through the port r by using variable v. The interaction is completed by
assigning v to variables y1 and y2. The model is the composition of Sender and Receivers using
the connector C2 which represents a broadcast from the Sender to the Receivers. When the
broadcast occurs, as a result of the composed data transfer, the Sender gets the sum of y1 and
y2, and each Receiver gets the value x from the Sender.

Active

Idle

work

print(y2)

r2

r2

Active

Idle

work

print(y1)

r1

r1

Active

work

x:=f(x)

s

[x<M]

s

rint w
up: {w:=x }

down: {x,v:=v,w}

int v
up: { v:=y1+y2 }

down: {y1,y2:=v,v}

C2

C1

Sender Receiver1 Receiver2
Receivers

Idle

Figure 4: An example of a BIP model

3.2 Semantics

BIP has clean operational semantics that describe the behavior of a composite component as the
composition of the behaviors of its atomic components. This allows a direct relation between
the underlying semantic model (transition systems) and its implementation.

We focus on aspects that are crucial for understanding the underlying mechanism for exe-
cution of interactions between a set of components. For the sake of simplification, we consider
components without priorities. These are only a filtering mechanism for interactions. Con-
sider a composite component built from n atomic components by using a set of connectors and
without priority rules. Its meaning is an extended automaton with:

• A set of variables, which is the union of the sets of variables of the atomic components.

• A set of control locations, which is the cartesian product of the sets of control locations
of the atomic components.

The extended automaton has a set of transitions of the form (s, α, g, f, s′), where:

• s = (s1, . . . , sn), si being a control state of the ith atomic component.
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• α is a feasible interaction associated with a guarded command (Gα, Fα), such that there
exists a subset J ⊆ {1, . . . , n} of atomic components with transitions {(sj , pj , gj , fj , s′j)}j∈J
and α = {pj}j∈J .

• g = (
∧
j∈J gj) ∧Gα.

• f = Fα; [fj ]j∈J . That is, the computation starts with the execution of Fα followed by the
execution of all the functions fj in some arbitrary order. The result is independent of this
order as components have disjoint sets of variables.

• s′(j) = s′j if j ∈ J ; otherwise s′(j) = sj . That is, the control locations from which there
are no transitions labeled with ports in α, remain unchanged.

The extended automaton is a machine with moves of the form (s, v)
α→ (s′, v′), where s is a

control location of the automaton and v is a valuation of its variables. The move (s, v)
α→ (s′, v′)

is possible if there exists a transition (s, α, g, f, s′), such that g(v) = true and v′ = f(v).
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4 Translation Tool

4.1 Design Decisions

The application specification in DOL3D is translated into an application model in BIP. The
specification consists of a structural description of the application, syntactically represented
in XML, while the functionality is defined by the function of the processes in C/C++. The
translation takes into account the structural and the functional specification of the application.
It takes as input the XML description of the structure, where all iterators have already been
pre-processed and flattened. The process behavior is accepted as plain C code whereby a set
of coding rules needs to be respected. Each element in the application model, namely process,
software channel, and connection is translated into a corresponding element in the BIP model.
Processes and software channels are translated into BIP atomic components, while connections
are translated into BIP connectors.

4.2 Functional Architecture

Figure 5 shows the architecture of the tool. It consists of an XML parser and a C parser.
The former reads the structural specification, while the later is used to parse the process be-
havior. The parsed structure and behavior information are stored as an intermediate data
structure, from which the BIP model of the application is generated by the translation step.
The translation uses a library of pre-defined BIP elements for generation of the software BIP
model. It contains the definition of input and output port types for the processes, connector
type definitions and atomic type definition of the software FIFO channel.

The tool has been entirely developed in Java with models represented in emf [19]. For the
C parsing, the open source C parser codegen [20] has been used.

DOL3D Application Specification

Functional Correctness, Performance Estimation,

Statistical Model Checking
BIP Toolset

D
O

L
3
D

 to
 B

IP
 T

ran
slato

r

Intermediate
data structure

Translation

XML
Parser

C
Parser

(C code)

Behavior

(XML)

Structure

Model (BIP)

Software

Library

SW Component

Figure 5: Tool Architecture
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4.3 Translation and Intermediate Format Generation

The main structural elements in DOL3D are process, sw channel, and connection, and each is
translated to a corresponding element in the BIP model.

Translation of process: The translation converts each <process> to an atomic component
in BIP.

<process name="pross">

<port type="input" name="inPort"/>

<port type="output" name="outPort"/>

<source type="c" location="pross.c"/>

</process>

The description of a <process> specifies its <port>. Each port is defined as a port in the
atomic component. In BIP, we have predefined port types, one for type "input" and the other
for "output". Each port is associated with variables, needed to implement the transfer of data
during read() and write(). Two variables are created, one contains the address of the data,
while the other contains its size.

The behavior of the process is translated to BIP from the source C file specification.

Translation of process behavior: The behaviour is abstracted into two methods, namely
init() and fire(), defining the initialization phase and the execution phase respectively. The init()
function is called once at the initialization of the application. The purpose of this function is
to initialize a process before running. The fire() function is called repeatedly by the scheduler
during runtime, by which the actual behaviour of a process is activated. There can be other
methods, which can be called from fire() and init(). The function detach() can be used to
terminate the execution of a process. The communication between processes is unified into a
set of two functions, i.e. DOL3D read(), and DOL3D write().

The interface to the internal state and the behavioural functions of a process is abstracted
in the C structure DOL3D Process, which contains pointer to a structure that stores local
information of a process. All the C structures are parsed and defined as local data in the process
component. Local variables defined in the init() and fire() functions are directly translated as
data in the process component.

The translation starts by parsing the C source code of a process to an itermediate object
model. The translation to BIP is done in two steps using the visitor pattern on the object
model. In the first step, the interaction points in the code are identified. Each call to a
DOL3D read()/DOL3D write() primitive is registered as an interaction point.

The second step involves the generation of an automata from the C statements. The fire()
routine is taken as the entry point for the generation of the automata. Control locations corre-
spond to DOL3D read()/DOL3D write() primitive calls, for which synchronization is required.
For every call to a DOL3D read()/DOL3D write(), a control location is created. An outgoing
transition is added from this location, labeled by the port used in the primitive. This transition
models the primitive call, which requires synchronization with a software FIFO component. The
port of a transition is associated with data that is read/written by the primitive invocation.
Additional assignment statements are added to read/write these data into local variables in the
function.

A block statement that contains interaction points is transformed into sequence of control
locations and transitions in the automaton. For such statements, e.g., conditional (if-else,
switch) or loop (for, while) or control satatement (break, continue, return), additional control
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locations are created and internal transitions guarded by the control condition are added to
model the control automaton.

For a conditional statement, a new control location is created with an incoming transition
where the branch condition evaluation action is added. Outgoing transitions, one for the positive
branch and another for the negative branch are created. The branches are finally merged to a
new control location.

For a loop statement, a new control location is created with an incoming transition where the
loop initialization action and exit condition are added. Outgoing transitions, one for the positive
exit condition and the other for the negative exit condition are created. For the negative exit
branch, a transition back to the starting location of the loop is added, with the exit condition
updation action.

Statements that do not contain interaction points are added as actions to the existing
transition. Subroutine calls that contain DOL3D read()/DOL3D write() primitive calls (either
directly or through nested subroutines) are flattened.

For the termination primitive DOL3D detach(), a control location with an incoming transi-
tion and without any outgoing transition is created.

From the last control location of the fire() method, a transition to its starting contol location
is added. This models the repeated call of the fire() method at runtime. The automaton
generated from the translation of the init() method is added to the starting location of the
fire() method.

Restrictions of the translator: The translation requires analysis of arbitrary C code and
hence is non-trivial. For the current implementation, we assume that the behavior of processes
are specified in C (the codegen parser is a C parser), with the following coding rules:

• in a switch statement, all case must end with a break statement

• a subroutine must have a single return statement

• DOL3D read()/DOL3D write() cannot be invoked in recursive subroutines

• no shared variables can be used between processes. Any global variable associated to a
process is translated to a local variable of the process component

• no use of goto statement

An example of the translation of the function pross fire() into an atomic component in BIP
is shown in figure 6. The function defines local integer variables i, j, k and size. Its invocation
reads data from port inPort of size size into the variable i. It then performs an iteration of
local computation and writes to port outPort the value k.

The BIP component generated from pross fire() has ports inPort, outPort and control lo-
cations L1, L2 and L3. i, j, k and size are defined as variables in the component. i is associated
with inPort and k is associated with outPort. At L1, the component awaits synchronization
through inPort corresponding to the DOL3D read() primitive call. At L3 it awaits synchro-
nization through outPort corresponding to the DOL3D write() primitive call. At L2, the
component can perform internal transitions (labeled by τ) guarded by the loop control condi-
tion.‘ Computations between successive DOL3D read/DOL3D write calls in pross fire() are
added as action statements with the respective transitions in the generated automaton.
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int pross fire(DOL3D process *p) {
int i, j, k;
DOL3D read((void*)inPort, &i, sizeof(int), p);
i++;
for (j=0; j<10; j++) {

i=i+j;
k = compute(i);
DOL3D write((void*)outPort, &k, sizeof(int), p);
i–;
}
return 0;
}

inPort

outPort

i−−; j++;

inPort

i++; j=0;

outPort

[j>=10]

[j<10]
i=i+j; k=compute(i);

L1

L2

L3var: i, j, k

τ

τ

Figure 6: Translating a process into a BIP component

Translation of a sw channel: The <sw channel> element is used to describe FIFO chan-
nels in the SDF. It has three attributes type, size, and name. type describes the type of the
channel. Currently, the type of a sw channel must be fifo. The attribute size specifies the
number of bytes a FIFO must be able to hold. Each <sw channel> element must have exactly
two <port> elements, one input and the other output. An example (from [17]) is the following:

<sw_channel type="fifo" size="100" name="C">

<port type="input" name="0"/>

<port type="output" name="1"/>

</sw_channel>

For a <sw channel>, the behavior is modeled as a predefined BIP atomic component mod-
eling a FIFO, represented in figure 7. It has ports recvPort and sendPort, and a single control
location. It contains an array variable buff parametrized by size N . The variable x associated
with recvPort gets the received value which is inserted into buff . The variable y associated
with sendPort contains the value to be read next. The FIFO policy is implemented by using
the two indices i and j, for insertion and deletion respectively from buff .

[count>0]

y=buff[j]; count−−; j=(j+1)%N

var: x, y, i, j, count, buff[N]

buff[i]=x; count++; i=(i+1)%N

i=0; j=0; count=0;

L1

y=buff[j];

sendPortrecvPort

recvPort

[count<N]

sendPort

Figure 7: FIFO channel in BIP

Translation of connection: The <connection> element is used to establish connections
between processes and the FIFO channels. More precisely, a connection is established between
two ports of the corresponding elements. Connections may only connect:

• a single output port of a <process> with a single input port of a <sw channel>, or
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• a single output port of a <sw channel> with a single input port of a <process>.

All connection specify an <origin> and a <target> to denote the two elements of the SDF that
should be connected, i.e. one port of a <process> and one port of a <sw channel> element.
Each connection defines a BIP connector which strongly synchronizes the corresponding source
and target ports of the respective atomic components. The connector types are predefined in
the library of BIP software components. The connectors are associated with transfer of data,
implementing the data transfer for read and write operations. A connector implementing a
write transfers data from a process to a channel, whereas the one implementing read transfers
data from a channel to a process. An example of a DOL3D application is shown in figure 8.

out1

out2

in

P2

P1

P3

in

Ch1

Ch2

Figure 8: Application model in DOL3D

It consists of a process P1 sending data to processes P2 and P3 by using FIFO channels Ch1
and Ch2 respectively. Each connection of the DOL3D model is translated into a BIP connector
in the corresponding BIP model of the application, as shown in the corresponding translated
example of figure 9.

Ch1

Ch2

P1

P2

P3

recvPort

recvPort in

in

out1

out2

sendPort

sendPort

Figure 9: Application model in BIP
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