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1 Introduction

3D-integration has been proposed as an innovative design technique meant to advance the
design of multiprocessor systems by increasing their integration scale and therefore improving
their computational performance. However, the new introduced architectural features impose
new design challenges in the software development phase. In particular, as a consequence
of greater integration, power densities increase and hence on-chip temperatures can exceed
maximum admitted thresholds. The software design must thus be aware of the physical process
of heat flow in the chip. This leads to unprecedented amount of low-level hardware information
that needs to be integrated to the software development process. A second difficulty in large 3D
architectures is the extensive communication network. In the architectures proposed in PRO3D,
networks-on-chip (NoCs) are used for communication. As a consequence, the latency incurred
in communication between two points is more difficult to estimate. A third difficulty that has
to be considered is how to efficiently make use of the memory locality in such a 3D structure.
All these features play a crucial role in identifying a mapping that is optimized with respect to
performance and that is thermal aware.
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Figure 1: DOL3D design flow.

Figure 1 identifies the main design phases in DOL3D design flow. Implementing the Y-chart
design paradigm, DOL3D considers parallel streaming applications represented as synchronous
dataflow graphs (SDFs) and specified independently from the architecture. An optimized map-
ping is found after the system-level exploration of different design alternatives. Mapping here
means binding application elements to computation and communication resources of the consid-
ered platform. Ultimately, the same system-level specification of the application and architec-
ture together with the optimal mapping specification form the synthesizable system specifica-
tion, which will be implemented on the final system or can be simulated on the virtual platform.
Typically, we use this low level simulation in a feedback loop for automatically calibrating our
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time and thermal analysis models used for comparison of different mapping alternatives, by
using techniques similar to those described in [11] [19].

This document will detail each of the design phases in DOL3D tool-flow and introduce our
advances in performance and temperature analysis, mapping optimization, and design space
exploration.
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2 Application, architecture, and mapping representation

In this section, we will briefly discuss the representations of applications (section 2.1), MPARM3D/P2012
architecture (section 2.2), and mapping of an application to the architecture (section 2.3).

2.1 Application representation

This section gives an overview of the DOL3D application representation. For a complete de-
scription, please refer to deliverable D3.1 [4]. As stated in the deliverable D3.1 [4], synchronous
dataflow graphs (SDF) [12] is the model of computation used in PRO3D. In DOL3D, an ap-
plication specification consists of (a) a structural representation, as defined by the structure of
the SDF graph, and (b) the functional behavior of each individual actor in the SDF. We now
describe each of these two aspects.

2.1.1 Structural specification

The structure of an application is defined by the structure of an SDF graph. SDFs are di-
rected graphs, with nodes representing actors (i.e., processes) and directed edges representing
communication channels between actors.

In DOL3D, these SDFs representing application structures are syntactically represented
in XML format. This representation captures the interconnection of the following elements:
process, sw channel, connection, and port. An example is shown in Figure 2, where for the
directed communication between two processes P and C (Figure 2(a)), a channel S is explicitly
represented with the corresponding ports and connections (Figure 2(b)).

P C

P S C

process

sw_channel

output port

input port

connection

(a)

(b)

Figure 2: Process network representation.

Each of the above elements in Figure 2(b) is explicitly represented in the XML file and has
specific parameters. For instance, a process has parameters that assign it a unique name, the
C/C++ source code which specifies its functionality, and a list of input/output ports. In addition,
benefitting of the extensibility of the XML format, other details can be annotated during the
design flow. For instance, after the functional simulation (see section 3.1 for the description of
the DOL3D functional simulation), ports of each process are annotated with the number and
the size of tokens communicated through them during execution. Also after the calibration step
on the actual PRO3D platform (see section 3.3), estimates of execution times on this platform
are also annotated in the application specification.

For a complete listing of the application XML file and detailed explanations of different
elements, please refer to deliverable D7.1 [5].
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2.1.2 Functional specification

The behavior of the DOL3D application is given by the functionality of individual processes. In
DOL3D, the functionality of the processes is written in separate C/C++ files. These files contain
two basic methods, namely DOL3D init() and DOL3D fire(). DOL3D init() is executed once
at the beginning, while DOL3D fire() is executed repeatedly until the application is terminated
with the DOL3D detach() command.

The communication between processes is done through a specific communication API, which
consists of two basic primitives DOL3D read() and DOL3D write(). The semantics of these
primitives will finally be determined in the moment of the implementation, and will actually
depend on platform-specific design choices.

As the model of computation is SDF, the total number of tokens consumed or produced
by an actor on each channel must remain constant across all firings. In DOL3D, we interpret
consuming/producing a token as a single call to the primitive DOL3D read() or DOL3D write(),
respectively. Hence, the number of DOL3D read() and DOL3D write() calls must be constant for
each actor, across firings. However, note that the amount of data read/written by DOL3D read()

or DOL3D write() can vary across firings. Validation if a given application satisfies this property
is performed by the DOL3D functional simulation, as discussed in section 3.1.

2.2 PRO3D architecture representation

For internal use in DOL3D, we have described the structure of the target multi-/many-core
platform, complying with both P2012 [16] and MPARM(3D) [5]. Please note that in this phase
of the project, the focus has been more on MPARM(3D), as we can generate code and freely
execute specifications on this platform.

Figure 3: A cluster of the P2012/MPARM(3D) platform.

A single cluster (tile) of the considered architecture is shown in Figure 3. The underlying
architecture consists of four clusters connected by a NoC in a 2 × 2 mesh topology. Each
cluster consists of a configurable number of cores (16 cores P 0 . . . P 15 are shown in Figure 3),
a tightly coupled data memory (TCDM), the L3 memory, a logarithmic interconnect (LogIntc),
and a network interface (NI). The LogIntc acts as the main connecting fabric inside the cluster.
It connects the cores with the TCDM and L3 memory, and also with the NI. TCDM contains multiple
memory banks.

Listing 1 is an example of minimal specification of core 2 in cluster 1 of the platform.
However, benefitting of XML extensibility, more information can be added at design time,
when needed by design tools. For the complete XML description of the architecture, please
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refer to deliverable D5.2 [6].

1 <pr oc e s s o r name = ‘ ‘1 .2 ’ ’ basename = ‘ ‘ proces sor ’ ’ range = ‘ ‘8 ’ ’
2 type = ‘ ‘RISC’ ’>
3 <f r equency value =”10ˆ9” />
4 </proces sor>

Listing 1: Core specification.

2.3 Mapping representation

The mapping of the application on the architecture defines where and how the components of
an application are executed on a hardware platform. In DOL3D, mapping specification defines
the binding of individual processes of the application onto cores of the platform. In this version
of DOL3D, for simplicity reasons, the communication buffer is supposed to be mapped to the
memory of the process consuming (i.e., reading) data/tokens from the channel. Please note
that this is just a simplification, illustrating a possible design choice and other options might
be equally explored as well.

Listing 2 specifies the binding of a process named producer on core 1.2 (i.e., cluster

1 - core 2). Details regarding the complete XML specification of mapping, please refer to
deliverable D2.1 [3].

1 <binding name=”bind ing producer ” x s i : type=”computation”>
2 <proce s s name=”producer”/>
3 <pr oc e s s o r name=”1.2”/>
4 </binding>
5

6 <binding name=”binding consumer ” x s i : type=”computation”>
7 <proce s s name=”consumer”/>
8 <pr oc e s s o r name=”3.1”/>
9 </binding>

Listing 2: Mapping specification of a process onto the core.
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3 DOL3D design flow

This section describes the various stages of the DOL3D design flow, as represented in Figure 1,
and how they contribute to the final goal of mapping optimization in PRO3D.

3.1 Functional verification

The applications we consider in PRO3D are based on the synchronous dataflow (SDF) model
of computation, as stated in section 2.1. However, most applications, in their original form, are
provided in a sequential way. Transforming a sequential application in to an SDF application
can be challenging. In particular, when aiming for such a transformation (parallelization) one
would like to verify if the obtained SDF specification is (a) functionally correct and (b) a valid
SDF graph. Importantly, such verifications would have to be done early in the design cycle and
independent of the platform of execution.

3.1.1 Automatic generation of SystemC code

To facilitate functional validation and verification of some functional properties, the first step
in DOL3D tool-chain is to generate functional SystemC executable code from the application
specification, which can be simulated on a general purpose computer. In particular, we use
sc thread, sc port, and sc channel to model the SDF processes, ports, and software channels,
respectively. Figure 4 shows an example SystemC model of a process network with three process
(in which the sc thread shown in the middle reads the data produced by the left sc thread

and writes the data for consumption by the right sc thread).

Figure 4: SystemC model of the application.

Description of code generation and corresponding commands within the DOL3D tool-chain,
are presented in a separate document made available in the PRO3D repository [10].

In the following section, we discuss how generated SystemC can be used to functionally verify
an application, and in particular to check if the application indeed conforms to the SDF model.
As well, we discuss the profiling of first performance data from inspecting the communication
patterns between the actors of the SDF graph.

3.1.2 Validating SDF properties

First and foremost, the generated code when executed on any standard machine, can be used
to functionally validate the SDF application. This validation would confirm that the SDF
processes work correctly in parallel and communicate correctly over FIFO channels.
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In SDF graphs, each process reads/writes a fixed number of tokens on each of its communi-
cation channels each time it executes (fires). The channels in an SDF graph may contain initial
tokens, produced during the initialization routine.

In the DOL3D framework, we interpret each DOL read() and DOL write(), as generating
and consuming a single token, respectively. Thus, a given process network is not SDF if the
number of DOL read() and DOL write() calls on any of the channels is not constant across all
invocations of fire routines. (The number of tokens on each channel at the end of the init

procedure of all processes defines the number of initial tokens.)
For example, Listing 3 describes the fire procedure of a process that has a constant number

of calls to DOL write(), namely 1.

1 i n t g e n e r a t o r 1 f i r e ( DOLProcess ∗p) {
2 i f (p−>l o c a l−>index < p−>l o c a l−>l en ) {
3 i n t x = ( i n t )p−>l o c a l−>index ;
4 DOL write ( ( void ∗)PORT OUT, &(x ) , s i z e o f ( i n t ) , p ) ;
5 p−>l o c a l−>index++;
6 }
7 i f (p−>l o c a l−>index >= p−>l o c a l−>l en ) {
8 DOL detach (p ) ;
9 re turn −1;

10 }
11 re turn 0 ;
12 }

Listing 3: Constant number of tokens at port PORT OUT.

As counter-example, Listing 4 describes the fire procedure of a process that does not have
a constant number of calls to DOL write().

1 i n t g e n e r a t o r 2 f i r e ( DOLProcess ∗p) {
2 i f (p−>l o c a l−>index < p−>l o c a l−>l en ) {
3 i f (p−>l o c a l−>index % 2){
4 i n t x = ( i n t )p−>l o c a l−>index ;
5 DOL write ( ( void ∗)PORT OUT, &(x ) , s i z e o f ( i n t ) , p ) ;
6 p−>l o c a l−>index++;
7 } e l s e {
8 char c = ’ a ’ ;
9 DOL write ( ( void ∗)PORT OUT, &(c ) , s i z e o f ( char ) , p ) ;

10 DOL write ( ( void ∗)PORT OUT, &(c ) , s i z e o f ( char ) , p ) ;
11 DOL write ( ( void ∗)PORT OUT, &(c ) , s i z e o f ( char ) , p ) ;
12 DOL write ( ( void ∗)PORT OUT, &(c ) , s i z e o f ( char ) , p ) ;
13 p−>l o c a l−>index++;
14 }
15 }
16 i f (p−>l o c a l−>index >= p−>l o c a l−>l en ) {
17 DOL detach (p ) ;
18 re turn −1;
19 }
20 re turn 0 ;
21 }

Listing 4: Variable number of tokens at port PORT OUT.

PRO3D - 248776 10/25 Tuesday 13th March, 2012 09:21



Public Programming for Future 3D Architectures with Manycore

3.1.3 Generation of platform-independent parameters

As specified in the previous section, the DOL3D tool-chain provides the first functional profiler,
which can be used to generate platform-independent parameters, as follows:

• numOfFires: number of activations of each process;

• initialAccesses: number of read/write accesses or tokens on each port in init of each
process;

• initialtokensize: number of bytes read/written on each port in init of each process;

• accesses: number of read/write accesses or tokens on each port per fire of each process;

• tokensize: number of bytes read/written on each port in fire of each process;

• numOfReads: number of read accesses from the software channel;

• numOfWrites: number of write accesses to the software channel;

• numOfInitialTokens: number of initial tokens on the software channel.

The above information is extracted from the DOL3D functional simulation and can be used
to both validate the design and suggest improvements in terms of parallelizing the applications.
As well, using the above parameters, the tool-chain can validate if the application specification
is indeed an SDF, based on the interpretation of tokens (as explained in the previous section
3.1.2). As an internal mechanism of the DOL3D tool-chain, the information collected by the
profiler will be further used for performance evaluations, as described later in section 3.3.

3.2 Automatic code generation for PRO3D platform

A crucial step in the DOL3D tool-chain is to synthesize code for the MPARM(3D)/NPL platform
from given application and mapping information. We call this a crucial step, since in order to
generate an optimal mapping with respect to PRO3D performance and thermal objectives, one
has to be able to characterize the behavior of the application on the specified architecture. One
way to do it is to generate platform-specific executable code to be simulated on a platform’s
simulator and to extract meaningful performance data that will be used later on in performance
predictions. Following this line of thought, we will generate from the DOL3D application
specifications executable code according to the native programming layer (NPL) API introduced
by UNIBO in the project deliverable D7.1 - section 4.1.3 Software control.

Transforming a DOL3D application to NPL-compatible code requires two specific tasks: (a)
manage the execution of different processes on a given core and (b) transform the communica-
tion primitives DOL3D read and DOL3D write to NPL-specific commands. We detail these two
actions in the remainder of this section.

Thread creation. The main program running on cluster 0 - core 0 is responsible for initial-
izing (a) different processes of the application onto the cores of the platform according to a
given mapping specification and (b) software channels used to communicate between processes.
Each process is executed as a separate thread.

The code snippet shown in Listing 5 illustrates the thread creation for a DOL3D process.
In the above thread creation, we first allocate a stack segment for the thread to be created (on
the cluster where the process is mapped to) and then we create the thread on the core given
by the mapping specification. In particular, in Listing 5, a thread is created on cluster 2 -
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core 3.

1 p 1 2 a l l o c c l u s t e r (2 , 1000 , m a k e a l l o c a t t r ( 0 , 0 , 0 , 0 ) , &s t a c k s e g ) ;
2 t h r e a d c r e a t e (&thread id , make procid ( 2 , 3 ) , process wrapper , 0 ,
3 &stack seg , 0 ) ;

Listing 5: Thread creation.

Thread execution. Each thread executes first the init routine of the corresponding DOL3D
process. Then, it repeatedly calls the corresponding fire routine, which is executed until the
process is finished by DOL3D detach().

Inter-thread communication. Communication amongst threads is specified by the corresponding
channels in the SDF process-network file. To enable communication along these channels, first,
software-based communication channels are created using NPL APIs. Then, the DOL3D write

and DOL3D read primitives are transformed using the NPL APIs for communication.
Listing 6 illustrates the initialization and allocation of the memory for communication chan-

nels. Here, the channel memory is allocated as specified in the mapping file. In the case shown
in Listing 6, memory on cluster 3 is allocated.

1 c h a n n e l b u f f e r [ 0 ] = ( char ∗) p 1 2 a l l o c c l u s t e r (3 , 20∗ s i z e o f ( char ) ,
2 m a k e a l l o c a t t r ( 0 , 0 , 0 , 0 ) , &s h s s e g ) ;
3 tmp segment . base = ( void ∗) c h a n n e l b u f f e r [ 0 ] ;
4 tmp segment . s i z e = 20∗ s i z e o f ( char ) ;
5 channel [ 0 ] = Q CREATE(&tmp segment , s i z e o f ( char ) , QTT BUFFER, NULL) ;

Listing 6: Communication channel creation.

The communication primitives DOL3D write() and DOL3D read() are implemented using
Q OUT AVAILABLE(), Q PUSH(), Q POP(), and Q IN AVAILABLE() of NPL. Listing 7 shows the
implementation of DOL3D write().

1 void DOL write implementation ( void ∗port , void ∗buf , i n t len ,
2 DOLProcess ∗ proce s s ) {
3 ProcessWrapper∗ process wrapper = ( ProcessWrapper ∗) process−>wptr ;
4 i n t i , r e t v a l ;
5 segment t tmp segment ;
6 q hand l e t qbuf ;
7

8 f o r ( i = 0 ; i < process wrapper−>number o f out port s ; i++) {
9 i f ( process wrapper−>o u t p o r t i d [ i ] == ( i n t ) port ) {

10 qbuf = channel [ process wrapper−>ou t channe l i d [ i ] ] ;
11 tmp segment . base = buf ;
12 tmp segment . s i z e = len ;
13 whi le (Q OUT AVAILABLE( qbuf ) < l en ) {
14 i f (TEST VERBOSE) p r i n t s t r p (” wait f o r s u f f i c i e n t b u f f e r ” ) ;
15 }
16 r e t v a l = Q PUSH( qbuf , NULL, &tmp segment ) ;
17 TEST ASSERT( r e t v a l == Q SUCCESS ) ;
18 break ;
19 }
20 }
21 }

Listing 7: DOL3D write implementation.
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3.3 Performance model and calibration

This section describes a simple performance model used in DOL3D and the calibration process
used to obtain accurate model parameters from the PRO3D platform.

The model is built in the phase denoted as “calibration” in Figure 1. The purpose of this
“calibration” phase is to acquire enough knowledge on PRO3D applications executed on PRO3D
platforms, such that, based on this knowledge further performance predictions are made. After
building the performance model, the “calibration” phase can be totally decoupled from the
tool-chain. The obtained performance model can be thus used independently in the system
“optimization” phase (highlighted in Figure 1 as well), for fast evaluations.

One has to note that during the calibration phase the entire PRO3D tool-chain has to be
functional in order to execute DOL3D applications on the platform simulator. First, applica-
tions and architectures have to be specified in DOL3D format; different “calibration” mappings
have to be generated; executable code has to be generated for the corresponding simulator/-
platform; all “calibration” mappings have to be executed on the platform simulator; finally,
performance data have to be captured during all these executions. In particular, for our eval-
uations we use MPARM(3D) with NPL layer, and we instrumented the simulation to acquire
performance data during execution.

The execution time of an application is mainly indicated by the fire() procedures, de-
scribing the behaviors of each of the application processes. In the fire() procedure, one can
distinguish between pure computation time and time spent in communication routines. For
that reason, we instrument the simulation to capture individual timings for different segments.
As illustrated in Figure 5, we distinguish between three types of segments: (1) computation
segment, (2) read segment, and (3) write segment. While a read segment is just a DOL3D read()

and a write segment is just a DOL3D write(), a computation segment is the maximal contiguous
block of C-code in the fire() without containing any DOL3D read() or DOL3D write(). As an
example, consider the fire() procedure of the generator1 process in Listing 3. The process
has three segments: (1) a computation segment consisting of lines 2 and 3, (2) a write segment
at line 4, and (3) a second computation segment consisting of lines 5 to 11.

The execution time model is designed based on non-linear regression. In particular, inspired
by different segments of a process execution, we distinguish in the model as well between com-
putation time and communication time. Computation time directly depends on the utilization
of the cluster on which the process (segment) is mapped. Communication time depends on both
utilizations of source and destination of this communication, as well as on the relative distance
between source and destination. While several communication models can be imagined de-
pending on the NoC structure, we take a simple approach and distinguish between three cases,
i.e., communication between processes on the same tile, communication between processes on
neighbor tiles, and communication between processes on far-away tiles.

The following equation is used to describe the execution time of a particular segment in the
application:

y = a1 + a2x1 + a3x
2
1 + a4x

3
1 +

a5x1x2 + a6x2 + a7x
2
2 +

a8x1x3 + a9x3 + a10x
2
3 +

a11x1x4 + a12x4 + a13x
2
4 (1)
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Figure 5: Analysis model generation - segment-based granularity.

The values of variables x1, x2, x3, and x4 depend on the type of the segment (i.e., compu-
tation, read, or write) and on the mapping, as follows:

• For computation segments or read segments, x1 is the utilization of the cluster on which
the segment is mapped to, while x2, x3, and x4 are set to be 0. The idea behind this is
the following. The computation depends on the latency to access local memory on the
cluster, and higher the number of processes on the cluster, the higher the interference on
the shared memory of the cluster, and therefore a higher execution time for processes. In
our current implementation of DOL read(), as we map the software channel to the memory
at the destination’s cluster, the execution time of the segment depends on the utilization
of that cluster. Otherwise, the discussion would be similar as for write segments.

• For a write segment, three cases are considered, depending on the mapping of source and
destination processes:

– Both the source and destination processes are mapped to cores of the same cluster.
In this case, x1 and x2 are set to the utilization of that cluster, while x3 and x4 are
set to 0. (Here, x2 indicates that both processes are on the same cluster.)

– The source and destination processes are on neighboring clusters. In this case, x1 is
set to the utilization of the cluster on which the source process is mapped; x3 is set
to the utilization of the destination cluster; and x2 and x4 are set to 0. (Thus, in
this case, we use x3 to identify the destination mapping.)

– The source and destination processes are neither on the same cluster nor on neigh-
boring clusters (i.e, they are located more than 1-hop away from each other). x1 is set
to the utilization of the source cluster; x4 is set to the utilization of the destination
cluster; and x2, and x3 are set to 0. (Thus, in this case, we use x4 for modeling of
“far-away” communication.)
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Model data is obtained after the calibration on a number of predefined mappings on the
platform. For each mapping and for each segment, we collect two types of values: (a) values of
variables x1, x2, x3, and x4, and (b) the execution time y for the considered segment. Once these
parameters established, we train parameters ai, 1 ≤ i ≤ 13 to obtain our complete performance
model. The execution time of any segment given any mapping can be calculated with this
model. The total execution time of a process is then obtained by summing up the individual
execution times of all segments. Ultimately, the execution time of an application µ is computed
as the maximum of the total execution times of each process in that application.

3.4 Worst-case thermal analysis

This section describes our investigations and some results on conservative thermal analysis of
multi-core systems, done at design time.

3.4.1 Worst-case thermal model

A modular temperature analysis method based on the framework of real-time calculus has been
introduced in D2.1 [3] and [14]. The aim is to bound the worst-case peak temperature of a
system, that is, the maximum temperature that can occur under all possible scenarios of task
executions. The work is similar to real-time analysis, where the time critical instant is identified
as releasing all tasks/events as early as possible without violating arrival curve constraints [9].

For temperature analysis, the temperature critical instant for a single processor is identified
among infinitely many traces that comply with the event stream specification in MPA, in [14].
We demonstrate that the workload trace that leads to the worst-case peak temperature at time
instant τ is to release events in time interval [τ −∆, τ) such that the processed computation in
time interval [τ −∆, τ) is maximized under arrival-curve constraints. For example, for periodic
tasks with jitter, the worst-case execution time occurs if burst arrivals and jitters happen at
system initialization, while the worst-case peak temperature occurs if the system is first warmed
up with periodic arrivals and then suddenly heat up with burst arrivals and jitters. Therefore,
R∗(0,∆) = Q∗(0,∆) = γ(τ)− γ(τ −∆), with γ(∆) = inf0≤λ≤∆{(∆−λ) +α(λ)} leads to worst-
case temperature, among all possible traces. The upper bound on component temperature
T ∗(τ) is guaranteed at time τ , with a precision determined by steady-state temperature and
thermal parameters of the underlying hardware, see [14].

However, for multi processor systems, besides the worst-case temperature due to self-heating
described above, heat transfer between components needs to be equally considered. In addition
to the upper bound on the temperature of each processing component k, T ∗

k (τ), we have to
construct the worst-case temperature sequence Qi

∗(0,∆) for all neighbor components i ∈ {1, n}
with respect to the chosen component k. The worst-case neighboring sequences will differ for all
analyzed components due to geometrical differences and imply different transfer delays between
cores. Finally, the worst-case peak temperature of the system T ∗

S is computed as the maximum
of all component temperatures T ∗

k , that is, T ∗
S = max (T ∗

1 , . . . , T
∗
n).

Often, finding the exact solution on worst-case heat transfer is only possible via exhaustive
search due to the huge number of possibilities in event patterns and undetermined locations of
heat transfer functions maxima. To speed up the calculations, we practically over-approximate
neighboring temperatures by simply maximizing the convolution between mirrored burst activi-
ties and accumulated maximum period of activity in the vicinity of the approximated maximum
heat transfer function. In our experiments, the over-approximation comes with a very small
error of below 1% in temperature variation, as reported in [13].
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3.4.2 Illustrative results

DOL3D was used to optimize the mapping of a motion JPEG (MJPEG) decoder on three ARM
cores communicating via a shared bus. Both worst-case latency and worst-case peak temperature
are considered during optimization. The MPARM virtual platform is used to determine the
computational demand of different processes and the power dissipation of ARM cores. Fixed
priority preemptive scheduling is used on all processors, while a TDMA policy is employed on
the bus. The application is driven by a periodic input stream, with a period of 110 kcycles and
a jitter of 220 kcycles. Thermal parameters were obtained from HotSpot [15].

Trade-off solutions on one, two, and three cores are illustrated in Figure 6. The processors
are identical, but they have different thermodynamical properties, due to their placement.
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Figure 6: Some preliminary performance-temperature investigations on MPARM.

Solution pairs where only the placement the homogeneous processors has been changed (e.g.,
mappings a and b), indicate that physical placement cannot be ignored in temperature analysis.
In our simple examples, we observe the same latency in all pairs because of the homogeneous
processor structure and the symmetric shared bus, but more than 3K maximum temperature
variation.

No solution is optimal with respect to both latency and temperature. The load balanced
mapping (mappings e and f) is a “cool” solution, due to small neighboring heat transfer and
shorter accumulated bursts. The two-processors solution (mappings c and d) has lower latency
since it eliminates some of the inter-processor communication overhead, but it is characterized
by the highest peak temperature due to neighboring effect and long accumulated bursts. Note,
that mappings on fewer cores could present lower temperatures if unused processors would be
turned off. In our experiments, unused processors still consume (non-negligible) idle power.

This section introduced a conservative thermal model and a set of experiments illustrating
the non-trivial dependencies between performance and temperature. The next section will detail
our design space exploration framework, while the last section of this deliverable will include
more advanced thermal control aspects we plan to investigate in the next phase of WP2 in
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PRO3D.

3.5 Design space exploration

In the previous section, we discussed our performance analysis models and methods for thermal
analysis under investigation. In particular, it has been shown how to analytically obtain the
execution time µ and the temperature T , given a binding b ∈ B (where B is the decision space
of mapping). Now, the questions we would like to address are: how to search over the space of
all possible bindings?, and also, how to compare two mappings, for instance, when one is having
higher performance but high temperature and the other is having lower temperature, but lower
performance as well? These two issues will be addressed by using multi-objective evolutionary
algorithms, this section being devoted to a discussion of our approach.

3.5.1 Multi-objective optimization: methods and goals

Evolutionary algorithms [21] are general-purpose stochastic search algorithms belonging to the
class of evolutionary computation. They can be considered as black-box optimizers in multi-
dimensional optimization spaces, i.e., aiming at optimizing a vector-valued objective function
f over a decision space X. Two vector-valued functions can be compared using the notion
of Pareto-dominance. Evolutionary algorithms consist of several phases such as initialization
followed by iterative steps of mating selection, crossover operation, mutation operation and
finally environmental selection. The initialization phase generates a population of solutions,
typically on a random basis. In mating selection, a few “good” solutions are selected as parent
solutions. Using the cross-over and mutation operators new child solutions are generated from
chosen parent solutions, and are added to the population. At this step, the new population is
compared with the population at the beginning of the previous iteration. If the new population
is found better (based on pre-defined criteria) it is retained. The iteration then repeats.

In our problem, the vector-valued objective function is f = (µ, T ) : B → R2. Optimizing
the system means minimizing f , with respect to both parameters. The decision space consists
of the binding function b which binds each process to a core. Given a solution (i.e., a mapping),
we can compute the values of µ and T by using the models of time and temperature introduced
in the previous sections.

The mating selection, cross-over and mutation operators can be defined in standard ways
on the solution vector. For instance, a standard cross-over operator could choose the binding
of an actor in the child solution to be equal to that of a randomly chosen parent. Please note
that “standard” operators, without considering the semantics of actual solutions may represent
an advantage. But as well, on specific problems, designers can intervene on these operators to
actually guide the random evolution towards better solutions, using domain-specific knowledge.
Then, during environmental selection, two populations can be compared by using the hyper-
volume indicator [20], i.e., roughly speaking, the set of solutions covering a larger volume in the
objective subspace are preferred.

The above procedure iteratively refines an initial population of solutions to finally obtain a
Pareto-optimized population. All solutions in this Pareto-optimized population are incompara-
ble with respect to the two objective functions. We can then choose one amongst the different
mappings, with preference for one or another objective, e.g., performance or temperature.

We use the frameworks of EXPO [17] and PISA [8] for the mapping optimization and the
Strength Pareto Evolutionary Algorithm (SPEA2) [22] as underlying multi-objective search al-
gorithm. Using a standard search method relieves us from implementing the problem-independent
parts of the evolutionary algorithm and allows us to focus on problem specific parts, that is,
the generation and variation of solutions. In particular, by using this approach, we only need
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Figure 7: EXPO interfaces

to implement the evaluation and generation, because the selection is handled inside SPEA2. In
the case of EXPO, the implementation is done in three Java classes:

• Specification. In the specification class, the static components of the problem are modeled,
such as the application structure and the architecture.

• Gene. In the gene class, a single candidate mapping is represented. In addition the
variation methods for the crossover and mutation are implemented in this class.

• Analyzer. In the analyzer class, the objective values of a single candidate mapping are
computed. Here, analysis models as those discussed in sections 3.3 and 3.4 for both
performance and temperature are invoked.

3.5.2 Multi-objective optimization: some results

Some preliminary results of running EXPO for a test application of nine processes on the
MPARM3D platform are presented, with the objectives of minimizing (1) the time taken to
execute the application and (2) the maximum utilization of any of the four clusters of the
platform (which is in direct correlation to cluster temperature, in a simplified abstraction).
Figure 8 (a) plots the initial population, randomly generated for the search. Each red dot in
the figure represents one mapping. After running EXPO, we obtain a set of optimized mappings
with respect to both objectives, illustrated in Figure 8 (b). Our tool offers such a visual support
for mapping investigations, and in this way designers can inspect mappings and finally select
their design choice. For instance, by clicking on one particular dot (i.e., mapping) in Figure 8
(b) the mapping specification consisting of the binding of each process to the respective cores
of the platform is displayed, as illustrated in Figure 9.
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(a) (b)

Figure 8: EXPO: (a) initial population, (b) a set of optimized mappings (each dot represents a
mapping)

Figure 9: EXPO: one of the optimized mappings - XML description.
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4 Theoretical investigations into dynamic mapping

4.1 Introduction

Thermal management is proposed at several levels in the PRO3D platform. First, the cooling
infrastructure is designed, analyzed and verified to provide the necessary heat dissipation to the
system [1]. Second, when exploring for different mappings, it is possible to have temperature-
based objective functions that are optimized along with performance-based objective functions.
As mentioned in the previous section, we may aim at minimizing the peak temperature along
with minimizing the total execution time.

In spite of the above design-time choices, there may be the need to respond to run-time
thermal emergencies. Such emergencies may arise due to incorrect models for heat dissipation,
power consumption, or software execution times. The wide breadth of the associated parameters
necessitates consideration for such dynamism. In the project, we propose to respond to such run-
time effects primarily using the cooling infrastructure. The proposed PRO3D platform allows
for the flow rate of the input coolant onto the micro-channels to be changed dynamically [2].
Thus, the coolant flow-rate can be increased in response to high on-chip temperatures. Such a
solution has two advantages. First, it does not need any specific “transition”, as the only change
is in the cooling infrastructure. Second, we can expect that the performance provided by the
architecture through such a transition is unaffected. For contrast, if the high temperatures were
to be responded to by decreasing the frequency of the system, the performance of the system
could be affected.

To complement the above dynamic approach, we have investigated two other approaches.
In either approach the software is affected by the dynamism. In the first approach, we consider
how we can “re-map” an application to reduce high on-chip temperatures. The prime consider-
ation here is the computation of different mappings. In the second approach, we consider how
control-theoretic approaches can be used to control the frequency of the system. The prime
consideration in the this approach is to discuss the effect on the performance provided by such
a system. We discuss these two interventions in the rest of the section.

4.2 Offline computation of multiple mappings

The main consideration for run-time re-mapping of the application is to distribute the com-
putation amongst offline and online stages. One solution is to re-compute a revised mapping
during runtime, considering the temperature of the system. However, such a runtime recon-
figuration can be computationally intensive and perhaps not feasible during situations of high
temperature. The alternative is to pre-compute certain mappings at design-time and to then
intelligently switch between these mappings during run-time. This is the approach we adopt,
whereby we pre-compute several mappings at design-time amongst which run-time re-mappings
can be switched.

High temperatures and high performance are contradictory requirements. When the temper-
ature of the system is high, the maximum performance that can be extracted from the system
will be lower. In this sense, there exists a natural trade-off space between temperature and
performance. It is our aim to express this trade-off space through offline computations. We do
this by using evolutionary algorithms to simultaneously consider temperature and performance
objective functions.

In the DOL3D tool-chain, in the EXPO phase we compute mappings with two objective
functions: (a) lower time-to-completion, and (b) lower localized utilization demand. While
the first objective function expresses the performance requirement of the system, the second
represents the temperature objective function. Higher the maximum utilization of any core,
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higher the temperature. Considering these two objective functions, we can compute the Pareto
front. An example of such a front is shown in Figure 8 (b). This Pareto front is characterized
by several mappings where the mappings are said to be incomparable in the multi-objective
sense. These mappings naturally generate the set of mappings amongst which we can switch
at run-time. If the temperature of the system is too large, we can switch to a mapping with a
lower temperature while compromising on the provided performance.

It is possible to refine the thermal objective function further. For instance, it is possible to
compute the peak temperature using a thermal simulator, such as 3DICE [7], and incorporate
that as the objective function in EXPO. Yet another approach could be to analytically com-
pute peak temperature for steady-state conditions and use the objective function in EXPO. In
this sense, the tool-chain allows for a modular approach, where different specific temperature
objective functions can be incorporated, as illustrated in section 3.4 on an example.

4.3 Feedback-control-based speed actuation

As a second approach, we consider the theoretical investigation of a system where an adaptive
approach to dynamic voltage and frequency scaling (DVFS) is used. We consider a system
where frequency (or speed) of the system is changed as a feedback control based on the current
temperature of the system. In other words, the frequency of the system is given by a feedback
control law such as

f(t) = g(T (t)), (2)

where f(t) and T (t) are the frequency and temperature of the system at time t, respectively.
The function g is the feedback control law that captures the relationship between temperature
and frequency.

Such a system provides some interesting advantages. Independent of the software that is
to execute on the system and its timing properties, we can compute provably safe bounds on
the temperature of the system. In other words, there we have the property of fault isolation:
Even if some design-time software model is faulty, we can still guarantee that the temperature
constraint is still satisfied. However, such a system has the disadvantage that the performance
of such a system is difficult to analyze. Since the frequency is temperature dependent the
performance provided by the system is a function on the past execution of the system.

The above challenge in analyzing the performance is of especial concern in real-time systems
where tasks must be guaranteed to complete within timing deadlines. We studied the problem
of analyzing the worst-case delay suffered by a stream of jobs when served by a system with
feedback speed actuation. We characterized the jobs by standard real-time timing models such
as arrival rate [18] denoted as α(∆). This model captures the upper-bound on the execution
time of jobs arriving in any interval of length ∆. With arrival rate we can compactly represent
variability in the arrival and execution times of a stream of jobs. The challenge then is to
compute the worst-case delay under any permissible arrival pattern of jobs.

We study the problem for a given time horizon denoted as τ , i.e., we observe the system for
the time-interval [0, τ ]. We proved that the worst-case delay suffered by any job in the system
is simply given by the delay suffered by the last job of the specific trace of jobs:

R(t) = α(τ)− α(τ − t), t ∈ [0, τ ]. (3)

We also proved that the above bound is tight, i.e., there exists a stream of jobs where a
job actually suffers from the worst-case delay. Thus, tight timing analysis of a processor with
feedback speed actuation is straight-forward: we have to symbolically simulate a single job
arrival pattern and observe the delay of the last job.

PRO3D - 248776 21/25 Tuesday 13th March, 2012 09:21



Public Programming for Future 3D Architectures with Manycore

The above analysis considers a cold start, i.e., the temperature of the system at time 0 is
equal to the ambient temperature. However, if this initial temperature is higher, the worst-case
delay can be different. To consider this variation, we extended the results to consider any initial
temperature. In summary, we showed that the above worst-case trace also gives the worst-case
delay on a “modified” thermal model of the system, where the temperature of the processor
is clipped to the initial temperature. The proofs of these results along with other details are
available in [14].
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5 Summary

This document describes the current status of DOL3D tool-chain and its role in PRO3D. The
ultimate role of DOL3D is to optimize the mapping of PRO3D applications to 3D platforms,
tackling the main challenges of 3D integration. Implementing the Y-chart design paradigm,
DOL3D considers parallel streaming applications represented as synchronous dataflow graphs
(SDFs) and specified independently from the architecture. An optimized mapping is found
after the system-level exploration of different design alternatives, with respect to both timing
and thermal parameters. The document summarizes the DOL3D specification format, the
automatic generation of different simulation levels, and introduces our advances in performance
and temperature analysis models, mapping optimization, and design space exploration.
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